33 BMW 1983 R100RS Remove Drive Shaft

I’m going to powder coat the swing arm so I need to remove the drive shaft. BMW used two different drive shaft designs on the airheads changing the design in the 1981 model year. This 1983 RS has the second version of the drive shaft design.

Drive Shaft Design

The older drive shaft design used a solid shaft. One end of the shaft attaches to a flange mounted on a universal joint that attaches to the transmission output flange and the other end has a bell housing that connects to the rear drive. The bell housing is attached to the shaft using a taper with shrink fit and a nut.

Pre-1981 Drive Shaft and Swing Arm

Pre-1981 Drive Shaft and Swing Arm

Pre-1981 Driveshaft Flange with Universal Joint That Mounts To Transmission Output Flange

Pre-1981 Drive Shaft Flange with Universal Joint That Mounts To Transmission Output Flange

Pre-1981 Driveshaft With Tapered End That Shrink Fits Into Bell Coupling

Pre-1981 Drive Shaft With Tapered End That Shrink Fits Into Bell Coupling

The newer drive shaft–introduced starting in the 1978 model year, but showing up on different models in different years until 09/1981 when all airheads had this new swing arm–has a spring and two yokes on the rear drive end of the drive shaft. The longer yoke includes the bell coupling that attaches to the rear drive and is free to spin on the drive shaft. The shorter yoke is butts up against a large spring and is attached to the drive shaft via splines so it turns with the drive shaft.

The other end of the drive shaft has a flange mounted in a universal joint to attach to the transmission output flange.

1981+ Drive Shaft Torsional Shock Absorption Assembly

1981+ Drive Shaft Torsional Shock Absorption Assembly

1981+ Compression Spring

1981+ Compression Spring

1981+ Small Yoke Has Splines That Fit Drive Shaft Splines

1981+ Short Yoke Has Splines That Fit Drive Shaft Splines

1981+ Small Yoke Mounted On Drive Shaft Splines

1981+ Short Yoke Mounted On Drive Shaft Splines

1981+ Large Yoke Has No Splines

1981+ Long Yoke Has No Splines

1981+ Large Yoke Bell Coupling Has Splines That Attach to Rear Drive Splines

1981+ Long Yoke Bell Coupling Has Splines That Attach to Rear Drive Splines

1981+ Driveshaft Flange Attaches to Transmission Output Flange

1981+ Drive Shaft Flange Attaches to Transmission Output Flange

As the engine abruptly changes RPM (up-shifts and down-shifts, hard acceleration and braking) the rear wheel and rear drive are rotating and have a lot of resistance (aka, inertia) to any sudden changes in rotation speed. Torque is what changes the speed of rotation. When the speed of rotation of the rear wheel, rear drive and drive shaft change quickly, an opposite rotation is created (Newton’s 3rd Law: For every action, there is an equal and opposite reaction). This resistance to a change in rotation twists the drive shaft. This stores energy in the shaft that is released later. The result is stress on the driveline components and jerks in the driveline as the drive shaft twists and untwists. In addition, sudden changes in the torque applied to the drive shaft lift (acceleration) and lower (deceleration) the chassis of the bike–which is familiar to any airhead rider–and that affects handling.

NOTE:
When I say “twists the drive shaft”, I don’t mean this is the same as rotating the shaft. The shaft does rotate, but the change in how fast it rotates causes the metal in the shaft to twist and untwist during and shortly after a sudden change in rotation of the drive shaft. The shaft acts like a watch spring that is wound up (twisting stores energy) and then unwinds (untwisting releases energy). This twisting/untwisting puts stress on the rear drive, drive shaft, clutch and transmission and makes the driveline jerky which also affects handling by jacking the frame up or down.

With the yokes and spring, a sudden change in rotation causes the yokes to ride up the ramps and compresses the spring when the drive shaft is suddenly twisted, and they return to the bottom of their ramps after the sudden twist of the drive shaft. The spring absorbs the force of a sudden change in rotation smoothing that sudden change in torque over a longer time. This reduces stress on all the drive line components (transmission, clutch, drive shaft, rear drive) and improves handling.

Tools

I’ve removed the drive shaft from a 1977 R100RS using a Cycle Works tool, but it doesn’t work with the newer, spring loaded drive shaft.

Cycle Works Driveshaft Removal Tool 1955-1980

Pre-1981 Cycle Works Drive Shaft Bell Housing Removal Tool

Pre-1981 Cycle Works Drive Shaft Bell Housing Removal Tool

Here is a link to the description of this tool.

I used this tool to remove the drive shaft on a 1977 R100RS and you can see how I did that work here:

Cycle Works Driveshaft Spring Compressor Tool 1981+

I need a different Cycle Works tool to remove the drive shaft on this 1983 RS. That’s the price of progress. 🙂 This tool is used to compress the drive shaft spring so I can remove a snap ring that secures the longer yoke with the bell coupling to the drive shaft. The snap ring keeps the longer yoke from coming off the drive shaft, but doesn’t cause the longer yoke to spin with the drive shaft. The shoulders of the short and long yokes are what make the long you spin.

1981+ Cycle Works Drive Shaft Removal Tool Components

1981+ Cycle Works Drive Shaft Removal Tool Components

Here is a link to the tool description.

This is the tool I use on this project.

Video

I made a video showing assembly of the Cycle Works drive shaft spring compressor tool and how I used it to remove the drive shaft.

Assemble Cycle Works Tool

The tool consists of two threaded rods and two aluminum plates; a narrow one without a large hole in the center and a wider one with a hole in the center. There are two larger coupling nuts, two regular nuts and four thick washers as shown in the picture below.

1981+ Cycle Works Drive Shaft Removal Tool Components

1981+ Cycle Works Drive Shaft Removal Tool Components

NOTE:
In some versions of the tool, the long threaded rod is replaced with two smaller rods and coupling nuts used to construct the longer rod. This was done to reduce the size of the shipping box.

The narrow plate has two tapped holes for the threaded rods to screw into. Each rod is secured with a thick washer under a nut. I screw the rods far enough into the plate so the end of the rod is even with the bottom of the nut.

Narrow Plate Has Two Tapped Holes That Threaded Rods Screw Into

Narrow Plate Has Two Tapped Holes That Threaded Rods Screw Into

Thick Flat Washer

Thick Flat Washer

Threaded Rods Screw Into Plate With Room For Flat Washer and Nut

Threaded Rods Screw Into Plate With Room For Flat Washer and Nut

Securing Narrow Plate Onto Threaded Rods

Securing Narrow Plate Onto Threaded Rods

The wider aluminum plate with the hole in the middle has a counter sunk hole on one side that fits around the bell coupling. The other two holes are not threaded and slide over the threaded rod.

I put the narrow plate underneath the flange of the drive shaft.

Drive Shaft End With Flange That Attaches to Transmission Output Shaft Flange

Drive Shaft End With Flange

Narrow Plate Goes Under Transmission Flange

Narrow Plate Goes Under Transmission Flange and Against The Mouth of The Drive Shaft Hole

I attach the wider aluminum plate with the hole through the threaded rods with the counter sunk hole over the bell coupling.

Wider Plate With Counterbored Hole Fits On Bell Coupling

Wider Plate With Counterbored Hole Fits On Bell Coupling

I secure the wider plate with two thick washers and the coupling nuts. I hand tighten the coupling nuts to snug up the tool on the drive shaft.

Wide Plate With Counterbored Hole Secured Around The Bell Coupling

Wide Plate With Counterbored Hole Secured Around The Bell Coupling

Flat Washers and Coupling Nuts Secure Wider Plate to Threaded Rods

Flat Washers and Coupling Nuts Secure Wider Plate to Threaded Rods

Remove Drive Shaft Snap Ring

I use a box end wrench and turn one coupling nut a full revolution and then the next so I compress the spring uniformly. Three turns of each coupling nut is enough to expose the snap ring.

Compressing The Drive Shaft Spring Alternating One Turn At A Time On Each Coupling Nut

Compress The Drive Shaft Spring By Alternately Tightening Each Coupling Nut One Turn

Snap Ring Exposed (The Notch at 1:00 Shows The Ring)

Snap Ring Exposed (The Ring Is Visible In The Notch at 1:00)

There is a notch on the end of the drive shaft for a small blade screw driver. I use a short shaft, small blade screw driver to start out as it’s easier to maneuver. I lever the snap ring out of its groove until the snap ring is about even with the top of the drive shaft. Then I use a longer shaft, small blade screw driver with its additional leverage to pry the ring all the way off the drive shaft.

Use Small Blade Screw Driver To Pry Snap Ring Out of Groove

Use Small Blade Screw Driver To Pry Snap Ring Out of Groove

Use Longer Shaft, Small Blade Screw Driver To Remove Snap Ring

Use Longer Shaft, Small Blade Screw Driver To Remove Snap Ring

Snap Ring Removed

Snap Ring Removed

Remove Drive Shaft Components

There is a retaining ring under the snap ring and I try to remove it with a magnet. It would not come loose. And, I wasn’t able to separate the bell coupling from the drive shaft by pulling on it.

Retaining Ring Fits Underneath The Snap Ring

Retaining Ring Fits Underneath The Snap Ring

The drive shaft bell coupling should slide off the the shaft. But mine doesn’t do that. So, I push bell coupling and the drive shaft back into the swing arm. The bell coupling is captured inside the the narrow part of the swing arm. I use a large drift with a hammer on the end of the drive shaft and a couple firm raps on the drift separate the bell coupling and retaining ring from the drive shaft.

"Fine Persuader" Tools For Getting Bell Housing Off Drive Shaft

“Fine Persuader” Tools For Getting Bell Housing Off Drive Shaft

A Couple Firm Wacks Coax The Shaft Off The Bell Coupling

A Couple Firm Wacks Coax The Shaft Off The Bell Coupling

Retaining Ring Removed

Retaining Ring Removed

I remove all the parts of the drive shaft assembly.

Drive Shaft Assembly Components

Drive Shaft Assembly Components

The parts in the top row are shown in the order of assembly. First is the sleeve that fits against the shoulder of the drive shaft, the compression spring, the short yoke, the long yoke, the retaining ring and the snap ring.

NOTE:
The snap ring is a “use once” part and should be replaced whenever you remove it.

Drive Shaft Parts Order and Inspection

The drive shaft has splines, but the upper portion of them have been machined away so the bell coupling can slide onto the drive shaft, but not be directly attached to it. I inspect the splines for damage but don’t see any cracks, chips, rounding or other signs of abuse.

Drive Shaft Showing Splines With Right Side Splines Machined Away

Drive Shaft Showing Splines With Right Side Splines Machined Away

There is a collar that slides over the splines and rests against a shoulder on the drive shaft. The spring rests on the collar. The collar shows no signs of being abused.

Spring Collar

Spring Collar

Spring Collar Installed on Drive Shaft

Spring Collar Installed on Drive Shaft

The spring slides down the splines and rests up against the collar. I don’t have spring height specifications that indicates if the spring is sagged or still servicable. But, the bike has 83,000+ miles so I’m going to replace the spring.

Compression Spring-Stout Looking :-)

Compression Spring-Stout Looking 🙂

Compression Spring Installed on Drive Shaft

Compression Spring Installed on Drive Shaft

The short yoke has splines that fit into the drive shaft splines to secure it to the drive shaft. I inspect the splines and the ramps of the yoke for wear and tear. There are horizontal ridges on the inside of the ramps. There is a small chip on one edge of a ramp. The splines are not worn or damaged.

Small Yoke Has Splines That Fit Drive Shaft Splines

Short Yoke Has Splines That Fit Drive Shaft Splines

Small Yoke Splines Are in Good Condition

Short Yoke Splines Are in Good Condition

Small Yoke Has Horizontal Ridges On Top of Ramps

Short Yoke Has Horizontal Ridges On Top of Ramps

Small Yoke Has Small Chip On Inside Edge of One Ramp

Short Yoke Has Small Chip On Inside Edge of One Ramp

Small Yoke Installed On Drive Shaft

Short Yoke Installed On Drive Shaft

The long yoke shows some scuffing and wear at the bottom and sides of the ramps. There are no chips on the edges of the ramps.

Large Yoke End of Bell Coupling Has No Splines

Yoke End of Bell Coupling Has No Splines

Large Yoke Shows Some Wear On Ramp Surface

Long Yoke Shows Some Wear On Ramp Surface

Large Yoke Shows Some Wear On Ramp Surface

Long Yoke Shows Some Wear On Ramp Surface

Large Yoke Showing Some Wear

Long Yoke Showing Some Wear

The splines in the bell coupling that engage the rear drive splines show no signs of wear, chips or rounding of the spline profile.

Bell Coupling Splines in Good Condition

Bell Coupling Splines in Good Condition

The bell coupling mates with the small yoke on the drive shaft as shown below. It’s a tight fit on the drive shaft.

Drive Shaft Torsional Assembly With Torsional Shock Absorbing Spring

Drive Shaft Torsional Assembly With Spring To Absorb Torsional Shocks

The bell coupling is secured to the drive shaft using a retaining ring under a snap ring. The spring force pushes on the retaining ring to keep the snap ring in its groove.

The bell coupling does not have splines so it is free to turn when there are large changes in torsional force applied to the drive shaft. The force of the compressed spring transmits the torque from the transmission to the bell coupling and the rear drive it attaches to.

The retaining ring has a groove machined into it on one side which pushes against the snap ring. The other side of the retaining ring that faces the inside the bell coupling is flat.

Retaining Ring Orientation Inside Large Yoke-Groove Faces You

Retaining Ring Orientation Inside Large Yoke-Groove Faces You

The snap ring fits into a groove on the end of the drive shaft and the retaining ring keeps it seated in the groove. The snap ring has a ridge machined into one side that fits against the groove of the retaining ring. The side of the snap ring that faces you when looking into the bell coupling is curved.

Grooved Side of Snap Ring Goes Against Retaining Ring

Grooved Side of Snap Ring Goes Against Retaining Ring

Rounded Side of Snap Ring Faces You When Installing

Rounded Side of Snap Ring Faces You When Installing

DANGER
The snap ring and retaining ring must be assembled in the correct orientation. The snap ring is “USE ONCE” and must be replaced. If you don’t assemble them correctly, or reuse the snap ring, you risk having the drive shaft fail.

Revisions

2019-06-29  Add link to 1977 drive shaft removal work. Minor edits.
2019-07-14  When new drive shaft introduced per Robert Fleischer note.
2019-11-27  Edits and typos.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.